If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+100+-10X+101=180
We move all terms to the left:
X^2+100+-10X+101-(180)=0
determiningTheFunctionDomain X^2-10X+100+101-180+=0
We add all the numbers together, and all the variables
X^2-10X=0
a = 1; b = -10; c = 0;
Δ = b2-4ac
Δ = -102-4·1·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-10}{2*1}=\frac{0}{2} =0 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+10}{2*1}=\frac{20}{2} =10 $
| 5k+6=18k-10+88 | | 4+15t-2=9t+119-7t | | 33-6x=2x-15 | | 5(a+2)=30-8a | | 34-7x=2x-11 | | 9x-19=0 | | -16.0=-3.2x | | x+0.06x=19080 | | 100y^2-144=0 | | 2x+3(4x)=140 | | 7(7-30)=-u-11 | | 15x+20=-6+8x | | 15x+20=-6+8 | | X=34x+20 | | 1-15/x=-50/x^2 | | j+(3j-2)=34 | | p-25=-31 | | 1-15/z=-50/z^2 | | (2x)3+(3x)3+(4x)3=54 | | 3=c+7-12 | | 2x+3x+4x=54 | | 0.3x(12x-16)=0.4(12-3x) | | 5x²-7x+8=6x5 | | 4v+16=132-7v+6 | | 1/5×x=14 | | x-6/4=x+8/3 | | 4v+16=132-7v | | 5x-4x-16=20 | | 2x+12/3=x-5 | | -16-4x=1 | | 1/2x+1/4x=8 | | 10t^2+25t-90=0 |